{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMKHqw2kijXqCdmLtn8I+WY"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# **Tugas 8 | Studi Kasus Heart Disease 5 Fitur | ANN**"],"metadata":{"id":"_aJGsqUoN-GQ"}},{"cell_type":"markdown","source":["Implementasi dengan menggunakan `ANN`"],"metadata":{"id":"3GF77lV2nWBa"}},{"cell_type":"markdown","source":["## Inisialisasi Model Dan Data ANN"],"metadata":{"id":"xQP1rKfWOI61"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"CVQQqobQGS-Z"},"outputs":[],"source":["import tensorflow as tf\n","import pandas as pd\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import keras\n","from keras.models import Sequential\n","from keras.layers import Dense\n","from sklearn.metrics import confusion_matrix"]},{"cell_type":"code","source":["data = pd.read_csv('https://raw.githubusercontent.com/soumya-mishra/Heart-Disease_DT/main/heart_v2.csv')\n","data.head()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"id":"dUsUaIiMGZy1","executionInfo":{"status":"ok","timestamp":1669553813427,"user_tz":-420,"elapsed":5,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"7214bdf7-e535-48d0-ffe9-21a457a13eb8"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" age sex BP cholestrol heart disease\n","0 70 1 130 322 1\n","1 67 0 115 564 0\n","2 57 1 124 261 1\n","3 64 1 128 263 0\n","4 74 0 120 269 0"],"text/html":["\n","
\n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," age | \n"," sex | \n"," BP | \n"," cholestrol | \n"," heart disease | \n","
\n"," \n"," \n"," \n"," 0 | \n"," 70 | \n"," 1 | \n"," 130 | \n"," 322 | \n"," 1 | \n","
\n"," \n"," 1 | \n"," 67 | \n"," 0 | \n"," 115 | \n"," 564 | \n"," 0 | \n","
\n"," \n"," 2 | \n"," 57 | \n"," 1 | \n"," 124 | \n"," 261 | \n"," 1 | \n","
\n"," \n"," 3 | \n"," 64 | \n"," 1 | \n"," 128 | \n"," 263 | \n"," 0 | \n","
\n"," \n"," 4 | \n"," 74 | \n"," 0 | \n"," 120 | \n"," 269 | \n"," 0 | \n","
\n"," \n","
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":71}]},{"cell_type":"code","source":["data.describe()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"id":"UD6Og2baGgsj","executionInfo":{"status":"ok","timestamp":1669553813886,"user_tz":-420,"elapsed":463,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"37d77199-fb53-4476-b6f3-540c80046afe"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" age sex BP cholestrol heart disease\n","count 270.000000 270.000000 270.000000 270.000000 270.000000\n","mean 54.433333 0.677778 131.344444 249.659259 0.444444\n","std 9.109067 0.468195 17.861608 51.686237 0.497827\n","min 29.000000 0.000000 94.000000 126.000000 0.000000\n","25% 48.000000 0.000000 120.000000 213.000000 0.000000\n","50% 55.000000 1.000000 130.000000 245.000000 0.000000\n","75% 61.000000 1.000000 140.000000 280.000000 1.000000\n","max 77.000000 1.000000 200.000000 564.000000 1.000000"],"text/html":["\n"," \n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," age | \n"," sex | \n"," BP | \n"," cholestrol | \n"," heart disease | \n","
\n"," \n"," \n"," \n"," count | \n"," 270.000000 | \n"," 270.000000 | \n"," 270.000000 | \n"," 270.000000 | \n"," 270.000000 | \n","
\n"," \n"," mean | \n"," 54.433333 | \n"," 0.677778 | \n"," 131.344444 | \n"," 249.659259 | \n"," 0.444444 | \n","
\n"," \n"," std | \n"," 9.109067 | \n"," 0.468195 | \n"," 17.861608 | \n"," 51.686237 | \n"," 0.497827 | \n","
\n"," \n"," min | \n"," 29.000000 | \n"," 0.000000 | \n"," 94.000000 | \n"," 126.000000 | \n"," 0.000000 | \n","
\n"," \n"," 25% | \n"," 48.000000 | \n"," 0.000000 | \n"," 120.000000 | \n"," 213.000000 | \n"," 0.000000 | \n","
\n"," \n"," 50% | \n"," 55.000000 | \n"," 1.000000 | \n"," 130.000000 | \n"," 245.000000 | \n"," 0.000000 | \n","
\n"," \n"," 75% | \n"," 61.000000 | \n"," 1.000000 | \n"," 140.000000 | \n"," 280.000000 | \n"," 1.000000 | \n","
\n"," \n"," max | \n"," 77.000000 | \n"," 1.000000 | \n"," 200.000000 | \n"," 564.000000 | \n"," 1.000000 | \n","
\n"," \n","
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":72}]},{"cell_type":"code","source":["data.isnull().any()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pKFZVyj3GiAJ","executionInfo":{"status":"ok","timestamp":1669553813887,"user_tz":-420,"elapsed":19,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"3e0c2016-dcfb-4c33-d2db-8cf05e45cd27"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["age False\n","sex False\n","BP False\n","cholestrol False\n","heart disease False\n","dtype: bool"]},"metadata":{},"execution_count":73}]},{"cell_type":"code","source":["nama_fitur = data.columns.copy()\n","nama_fitur = nama_fitur.drop('heart disease')\n","nama_fitur"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"3tCLlMqMIYF_","executionInfo":{"status":"ok","timestamp":1669553813887,"user_tz":-420,"elapsed":18,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"fea2c385-ab4e-4326-ceca-85c46a9cb770"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["Index(['age', 'sex', 'BP', 'cholestrol'], dtype='object')"]},"metadata":{},"execution_count":74}]},{"cell_type":"code","source":["X = data.iloc[:,:4].values\n","y = data[\"heart disease\"].values"],"metadata":{"id":"ViuJpH2-GlAk"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["X"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"H_jyC4BeGuj1","executionInfo":{"status":"ok","timestamp":1669553813888,"user_tz":-420,"elapsed":16,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"bdb02b16-2ee4-4f16-b89c-79ba40615998"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([[ 70, 1, 130, 322],\n"," [ 67, 0, 115, 564],\n"," [ 57, 1, 124, 261],\n"," ...,\n"," [ 56, 0, 140, 294],\n"," [ 57, 1, 140, 192],\n"," [ 67, 1, 160, 286]])"]},"metadata":{},"execution_count":76}]},{"cell_type":"code","source":["y"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"k7-G675OGvoN","executionInfo":{"status":"ok","timestamp":1669553813889,"user_tz":-420,"elapsed":16,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"8843bbd3-9942-4b2f-d37e-23573f93a1f3"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,\n"," 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n"," 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1,\n"," 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,\n"," 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,\n"," 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,\n"," 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,\n"," 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,\n"," 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,\n"," 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n"," 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,\n"," 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,\n"," 1, 0, 0, 0, 0, 1])"]},"metadata":{},"execution_count":77}]},{"cell_type":"markdown","source":["### Preprosessing Data"],"metadata":{"id":"RM5kB2b8OO7a"}},{"cell_type":"code","source":["from sklearn.preprocessing import MinMaxScaler\n","scaler = MinMaxScaler()\n","scaled = scaler.fit_transform(X)\n","scaled_fitur = pd.DataFrame(scaled,columns=nama_fitur)\n","scaled_fitur"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":424},"id":"owWugtmiJf-h","executionInfo":{"status":"ok","timestamp":1669553813889,"user_tz":-420,"elapsed":15,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"3418d222-61ee-4446-9998-cbc373e871ef"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" age sex BP cholestrol\n","0 0.854167 1.0 0.339623 0.447489\n","1 0.791667 0.0 0.198113 1.000000\n","2 0.583333 1.0 0.283019 0.308219\n","3 0.729167 1.0 0.320755 0.312785\n","4 0.937500 0.0 0.245283 0.326484\n",".. ... ... ... ...\n","265 0.479167 1.0 0.735849 0.166667\n","266 0.312500 1.0 0.245283 0.312785\n","267 0.562500 0.0 0.433962 0.383562\n","268 0.583333 1.0 0.433962 0.150685\n","269 0.791667 1.0 0.622642 0.365297\n","\n","[270 rows x 4 columns]"],"text/html":["\n"," \n","
\n","
\n","\n","
\n"," \n"," \n"," | \n"," age | \n"," sex | \n"," BP | \n"," cholestrol | \n","
\n"," \n"," \n"," \n"," 0 | \n"," 0.854167 | \n"," 1.0 | \n"," 0.339623 | \n"," 0.447489 | \n","
\n"," \n"," 1 | \n"," 0.791667 | \n"," 0.0 | \n"," 0.198113 | \n"," 1.000000 | \n","
\n"," \n"," 2 | \n"," 0.583333 | \n"," 1.0 | \n"," 0.283019 | \n"," 0.308219 | \n","
\n"," \n"," 3 | \n"," 0.729167 | \n"," 1.0 | \n"," 0.320755 | \n"," 0.312785 | \n","
\n"," \n"," 4 | \n"," 0.937500 | \n"," 0.0 | \n"," 0.245283 | \n"," 0.326484 | \n","
\n"," \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n"," ... | \n","
\n"," \n"," 265 | \n"," 0.479167 | \n"," 1.0 | \n"," 0.735849 | \n"," 0.166667 | \n","
\n"," \n"," 266 | \n"," 0.312500 | \n"," 1.0 | \n"," 0.245283 | \n"," 0.312785 | \n","
\n"," \n"," 267 | \n"," 0.562500 | \n"," 0.0 | \n"," 0.433962 | \n"," 0.383562 | \n","
\n"," \n"," 268 | \n"," 0.583333 | \n"," 1.0 | \n"," 0.433962 | \n"," 0.150685 | \n","
\n"," \n"," 269 | \n"," 0.791667 | \n"," 1.0 | \n"," 0.622642 | \n"," 0.365297 | \n","
\n"," \n","
\n","
270 rows × 4 columns
\n","
\n","
\n"," \n"," \n","\n"," \n","
\n","
\n"," "]},"metadata":{},"execution_count":78}]},{"cell_type":"markdown","source":["### Split data"],"metadata":{"id":"09ZxzSb6OWLq"}},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split\n","X_train, X_test, y_train, y_test=train_test_split(scaled_fitur, y, test_size=0.2, random_state=1)\n","X_train.shape + X_test.shape"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ikNcfxFQHC2C","executionInfo":{"status":"ok","timestamp":1669553813889,"user_tz":-420,"elapsed":14,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"dc16a06c-ce72-4682-cc18-260cf0f19ae5"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(216, 4, 54, 4)"]},"metadata":{},"execution_count":79}]},{"cell_type":"markdown","source":["### Inisialisasi Layer ANN"],"metadata":{"id":"Sh4pCSB2OX5n"}},{"cell_type":"code","source":["\n","classifier = Sequential()\n","classifier.add(Dense(activation = \"relu\", input_dim = 4, \n"," units =8, kernel_initializer = \"uniform\"))\n","classifier.add(Dense(activation = \"relu\", units = 14, \n"," kernel_initializer = \"uniform\"))\n","classifier.add(Dense(activation = \"sigmoid\", units = 1, \n"," kernel_initializer = \"uniform\"))\n","classifier.compile(optimizer = 'adam' , loss = 'binary_crossentropy', \n"," metrics = ['accuracy'] )"],"metadata":{"id":"7kLOKDKoKmDM"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["### Train Data pada Model"],"metadata":{"id":"rrYgU3ycOa13"}},{"cell_type":"code","source":["classifier.fit(X_train , y_train , batch_size = 8 ,epochs = 100)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"w0HALShmKpZJ","executionInfo":{"status":"ok","timestamp":1669554434531,"user_tz":-420,"elapsed":6470,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"b212ed88-bf62-45e5-f048-b0949a200f3a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6930 - accuracy: 0.5324\n","Epoch 2/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6924 - accuracy: 0.5509\n","Epoch 3/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6920 - accuracy: 0.5509\n","Epoch 4/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6915 - accuracy: 0.5509\n","Epoch 5/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6911 - accuracy: 0.5509\n","Epoch 6/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6908 - accuracy: 0.5509\n","Epoch 7/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6899 - accuracy: 0.5509\n","Epoch 8/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6892 - accuracy: 0.5509\n","Epoch 9/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6885 - accuracy: 0.5509\n","Epoch 10/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6874 - accuracy: 0.5509\n","Epoch 11/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6863 - accuracy: 0.5509\n","Epoch 12/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6847 - accuracy: 0.5509\n","Epoch 13/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6825 - accuracy: 0.5509\n","Epoch 14/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6800 - accuracy: 0.5509\n","Epoch 15/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6781 - accuracy: 0.5509\n","Epoch 16/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6734 - accuracy: 0.5509\n","Epoch 17/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6699 - accuracy: 0.5509\n","Epoch 18/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6657 - accuracy: 0.5509\n","Epoch 19/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6634 - accuracy: 0.5509\n","Epoch 20/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6589 - accuracy: 0.5741\n","Epoch 21/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6555 - accuracy: 0.6111\n","Epoch 22/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6514 - accuracy: 0.6204\n","Epoch 23/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6488 - accuracy: 0.6435\n","Epoch 24/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6470 - accuracy: 0.6343\n","Epoch 25/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6446 - accuracy: 0.6250\n","Epoch 26/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6432 - accuracy: 0.6389\n","Epoch 27/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6414 - accuracy: 0.6250\n","Epoch 28/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6398 - accuracy: 0.6343\n","Epoch 29/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6386 - accuracy: 0.6250\n","Epoch 30/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6368 - accuracy: 0.6389\n","Epoch 31/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6367 - accuracy: 0.6389\n","Epoch 32/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6348 - accuracy: 0.6250\n","Epoch 33/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6347 - accuracy: 0.6250\n","Epoch 34/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6334 - accuracy: 0.6296\n","Epoch 35/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6320 - accuracy: 0.6343\n","Epoch 36/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6308 - accuracy: 0.6250\n","Epoch 37/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6292 - accuracy: 0.6296\n","Epoch 38/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6284 - accuracy: 0.6481\n","Epoch 39/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6283 - accuracy: 0.6250\n","Epoch 40/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6276 - accuracy: 0.6389\n","Epoch 41/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6264 - accuracy: 0.6250\n","Epoch 42/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6243 - accuracy: 0.6389\n","Epoch 43/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6246 - accuracy: 0.6204\n","Epoch 44/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6230 - accuracy: 0.6250\n","Epoch 45/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6224 - accuracy: 0.6481\n","Epoch 46/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6208 - accuracy: 0.6389\n","Epoch 47/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6204 - accuracy: 0.6343\n","Epoch 48/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6200 - accuracy: 0.6343\n","Epoch 49/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6189 - accuracy: 0.6343\n","Epoch 50/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6174 - accuracy: 0.6435\n","Epoch 51/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6171 - accuracy: 0.6296\n","Epoch 52/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6156 - accuracy: 0.6389\n","Epoch 53/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6157 - accuracy: 0.6435\n","Epoch 54/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6141 - accuracy: 0.6481\n","Epoch 55/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6139 - accuracy: 0.6343\n","Epoch 56/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6125 - accuracy: 0.6481\n","Epoch 57/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6123 - accuracy: 0.6481\n","Epoch 58/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6113 - accuracy: 0.6435\n","Epoch 59/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6123 - accuracy: 0.6343\n","Epoch 60/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6093 - accuracy: 0.6574\n","Epoch 61/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6101 - accuracy: 0.6481\n","Epoch 62/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6086 - accuracy: 0.6435\n","Epoch 63/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6072 - accuracy: 0.6528\n","Epoch 64/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6079 - accuracy: 0.6481\n","Epoch 65/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6065 - accuracy: 0.6574\n","Epoch 66/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6060 - accuracy: 0.6435\n","Epoch 67/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6078 - accuracy: 0.6528\n","Epoch 68/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6046 - accuracy: 0.6481\n","Epoch 69/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6042 - accuracy: 0.6481\n","Epoch 70/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6047 - accuracy: 0.6574\n","Epoch 71/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6038 - accuracy: 0.6528\n","Epoch 72/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6035 - accuracy: 0.6435\n","Epoch 73/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6044 - accuracy: 0.6667\n","Epoch 74/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6033 - accuracy: 0.6528\n","Epoch 75/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6020 - accuracy: 0.6528\n","Epoch 76/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6026 - accuracy: 0.6620\n","Epoch 77/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6002 - accuracy: 0.6574\n","Epoch 78/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6022 - accuracy: 0.6528\n","Epoch 79/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5994 - accuracy: 0.6667\n","Epoch 80/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5997 - accuracy: 0.6759\n","Epoch 81/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5982 - accuracy: 0.6620\n","Epoch 82/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5985 - accuracy: 0.6667\n","Epoch 83/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5988 - accuracy: 0.6620\n","Epoch 84/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5982 - accuracy: 0.6713\n","Epoch 85/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5973 - accuracy: 0.6574\n","Epoch 86/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5973 - accuracy: 0.6574\n","Epoch 87/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5972 - accuracy: 0.6713\n","Epoch 88/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5977 - accuracy: 0.6667\n","Epoch 89/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5972 - accuracy: 0.6667\n","Epoch 90/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5963 - accuracy: 0.6759\n","Epoch 91/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5973 - accuracy: 0.6574\n","Epoch 92/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5977 - accuracy: 0.6574\n","Epoch 93/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5963 - accuracy: 0.6528\n","Epoch 94/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5952 - accuracy: 0.6667\n","Epoch 95/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.6000 - accuracy: 0.6713\n","Epoch 96/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5946 - accuracy: 0.6667\n","Epoch 97/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5980 - accuracy: 0.6481\n","Epoch 98/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5950 - accuracy: 0.6574\n","Epoch 99/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5947 - accuracy: 0.6620\n","Epoch 100/100\n","27/27 [==============================] - 0s 2ms/step - loss: 0.5942 - accuracy: 0.6574\n"]},{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":113}]},{"cell_type":"markdown","source":["### Predict data With X_Test"],"metadata":{"id":"HbXw7QdIOeG5"}},{"cell_type":"code","source":["\n","y_pred = classifier.predict(X_test)\n","y_pred = (y_pred > 0.5)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"cTB6qOt_Ny7i","executionInfo":{"status":"ok","timestamp":1669554715073,"user_tz":-420,"elapsed":3,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"22ebb667-8e05-44de-c2c4-164a7c91db7a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["2/2 [==============================] - 0s 5ms/step\n"]}]},{"cell_type":"code","source":["cm = confusion_matrix(y_test,y_pred)\n","cm"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"UsO7g4OdN2yD","executionInfo":{"status":"ok","timestamp":1669554729586,"user_tz":-420,"elapsed":334,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"5e38f344-19c2-4b72-82e2-ccc6b53d1b96"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([[21, 10],\n"," [ 6, 17]])"]},"metadata":{},"execution_count":115}]},{"cell_type":"markdown","source":["### Akurasi ANN"],"metadata":{"id":"wgFOgflVOisX"}},{"cell_type":"code","source":["\n","accuracy = (cm[0][0]+cm[1][1])/(cm[0][1] + cm[1][0] +cm[0][0] +cm[1][1])\n","print(accuracy*100)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"WAlVolP7N6uC","executionInfo":{"status":"ok","timestamp":1669554745784,"user_tz":-420,"elapsed":304,"user":{"displayName":"Caca Erha","userId":"13359221303846732984"}},"outputId":"2d2a52f1-deab-428c-cc95-e5e87d2ddef6"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["70.37037037037037\n"]}]}]}